WAEC Further Mathematics Questions 2018 and OBJ and Theory Answers

0
20
WAEC Further Mathematics Questions 2018 and OBJ and Theory Answers.
Further Mathematics WAEC Questions 2018… In this article, I will be showing you past Further Mathematics objective and theory random repeated questions for free. You will also understand how WAEC Further Mathematics questions are set and many other examination guides. Stay focus and read through.

WAEC Further Mathematics Questions

                                        

The West African Examinations Council (WAEC) is an examination board that conducts the West African Senior School Certificate Examination, for University and Jamb entry examination in West Africa countries. … In a year, over three million candidates registered for the exams coordinated by WAEC.

                                           

The West African Examination Council (WAEC) Further Mathematics Senior School Certificate Examination (SSCE) paper will take place on Wednesday, 9th April, 2018.

The 2018 WAEC Further Mathematics exam will comprise of Papers 2 & 1 Essay and Objective which will commence from 8.30am and end by 14.30am. That means the examination will last for three hours (3hrs) only.
In this post, we will be posting out samples of the WAEC Further Mathematics questions for candidates that will participate in the examination for practice purposes.

WAEC Further Mathematics Answers.

1CBBDCAADCB
11DCBDCBCDCC
21ABDCDABBCB
31CDCADBCAAD
=========================
12)
P:F=4:1 =4x+1x=100
5x=100
x=100/5
x=20
pass=20*4=80%
fail= 20*1=20%
p(pass)=80/100=0.8
p(fail)=20/100=0.2
n=7
12ai)
P(at least 3passed)
P=0.8
Q=0.2
P(x=r)=n(rP^rq^n-r
P(x>/3)=1-P(x<2) P(x<2)=P(x=0)+P(x=1)+P(x=2) P(x=0)=7dgree (0.8)degree (0.2)^7 P(x=0)=0.0000128 P(x=1)=^7( (0.8)^1 (0.2)^6 =0.0003584 P(x<2)=7^C2 (0.8)^2 (0.2)^5 =0.0043008 P(X<2)=0.0000128+0.0003584+0.004300 =0.004672 P(x>3)=1-0.004672
=0.995321
=0.10(2d.p)
12aii)
P(between 3 and 6 failed)
P=0.2
q=0.8
P(36)
P(x=3) + P (x=4)+p(x=5)+P(x=6)
p(x=3) 7^C3 (0.2)^3 (0.8)^4
=0.114688
p(x=4)=7^C4 (0.2)^4 (0.8)^3
0.028672
P(x=5)=7^C5 (0.2)^5 (0.8)^2
=0.0043008
P(x=6)=7^C6 (0.2)^6 (0.8)^1
=0.0003584
p(36)
=0.114688+0.028672+0.0043008
+0.0003584
=0.1480192
=0.15(2d.p)
==================
4)
(x^2+5x+1)sqroot(2x^3+mx^2+nx+11)=(2x-5)
remainder:30x+16
(x^2+5x+1)(2x-5)
=2x^3+10x^2+2x-5x^2-25x-5
=2x^3+10x^2-5x^2-25x-5
=2x^3+5x^2-23x+30x+16-5
=2x^3+5x^2+7x+11
Therefore m=5, n=7
=================
5a)
pr(age)=4/5
pr(fully)=3/4
pr(must)=2/3
pr(age not admitted)=1-4/5
=1/5
pr(fully not admitted)=1-3/4
=1/4
pr(must not admitted)=1-2/3
=1/3
Therefore pr(none admitted)=1/5*1/4*1/3
=1/60
5b)
pr(only age and fully gained admission)=4/5*3/4*1/3
=1/5
================
12a)
tabulate
Marks| 1-10, 11-20, 21-30, 31-40, 41-50,51-60, 61-70, 71-80, 81-90, 91-100
F| 3, 17, 41, 85, 97, 115, 101, 64, 21, 6
C.B| 0.5-105, 10.5-205, 20.5-305, 30.5-405,40.5-505, 50.5-605, 60.5-705, 70.5-805,80.5-905, 90.5-1005
C.F| 0+3=3, 3+17=20, 20+41=61, 61+85=146,146+77=243, 243+115=358, 358+101=459,459+64=523, 523+21=544, 544+6=550
=================
11a)
Given:
f(x)={(4x-x^2)dx
f(x)=2x^2 – x^3/3 + K
f(3)=2(3)^2 – (3)^2/3 + K =21
18 – 9 + K=11
9+K=21
K=21-9
K=12
Therefore
f(x)= -x^3 + 2x^2 + 12
11b)
i) Tn=a+(n-1)d
T2=a+(2-1)d
T2=a+d
T4=a+3d
T8=a+7d
GP
Tn=ar^n-1
T1=ar^1-1
T2=ar^2-1=ar
T3=ar^2
a+d=a …..equation (1)
a+3d=ar …..equation (2)
a+7d=ar^2 …..equation (3)
T3+T5=20
a+2d+a+4d=20
2a+6d=20
a+3d=10 …..equation (4)
…..equation (2)/…..equation (1)
ar/a=a+3d/a+d
r=a+3d/a+d
…..equation (3)/…..equation (2)
ar^2/ar=a+7d/a+3d
r=a+7d/a+3d
but r=r
a+3d/a+d=a+7d/a+3d
(a+3d)^2=(a+d)(a+7d)
a^2+6ad+ad^2
a^2+7ad+ad+7d^2
a^2+8ad+7d^2
a^2+6ad+9d^2=a^2
+8ad+7d^2
6ad+9d^2=8ad+7d^2
6ad-8ad=7d^2-9d^2
-2ad=2d^2
ad=dd
a=d
===================
(9a)
1/1-cos tita + 1/1+cos tita
=1+cos tita + 1-cos tita//(1-cos tita) (1+cos tita)
= 2/1+cos tita – cos tita – cos^2 tita
= 2/1-cos^2 tita
Recall that :
Cos^2 tita + sin^2 tita = 1
.:. Cos^2 tita = 1-sin^2 tita
.:. 1/1-cos^2 tita + 1/1+cos tita
= 2/1-(1-sin^2 tita)
(9b)
At stationary points,
dy/dx=0.
y=x^0(x-3)
Let u=x^2,v=x-3.
du/dx=2x dv/dx=1.
dy/dx= Udv/dx + Vdu/dx
dy/dx=x^2(1)+(x-3)(2x)
.:. dy/dx=x^2+2x^2-6x
dy/dx=3x^2-6x
At stationary point,
dy/dx=0..
.:.3x^2-6x=0
Equation of line=> 3x^2-6x=0
==================
14ai)
SKETCH THE DIAGRAM
14aii)
Using lami’s theory
T1/sin60=T2/sin30
48N/sin60=T2/sin30
48N/0.8660=T2/0.5
0.5(48)/0.8660=T2(0.8660)/0.8660
T2=24/0.8660
T2=27.7N
14b)
Using the equation of motion
H=U^2/2g
H=(20)^2/2*10
=20*20/20
H=20m
Timetaken to reach the maximum height
S=Ut+1/2at^2
20=0+1/2(100)t^2
20/5=5t^2/5
t^2=4
t=sqroot4
t=2S
================
10a)
i) (x^2-1) (x+2)=0
(x-1) (x+1) (x+2)
x=1, or -1 or -2
ii) 2x-3/(x-1)(x+1)(+2)
=A/x-1+B/x+1+C/x+2
2x-3=A(x+1)(x+2)+B(x-1)(x+2)
+C(x-1)(x+1)
let x+1=0,x=-1
2(-1)-3=B(-1-1)(-1+2)
-5/2=-2B/-2 B=5/2
let x-1 =0 x=1
2(1)-3=A(1+1)(1+2)
-1=CA, A=-1/6
Let x+2=0 x=-2
2(-2)-3=C(-2-1)(-2+1)
-7=3C, C=-7/3
10b)
X1 Y2
(3, 1)
r=sqr(x2-x1)^2+(y2-y1)^2
r=sqr(3+3)^2+(1-1)^2
r=sqr6^2+0=sqr36=6
the equatuon of a circle
(x-a)^2+(y-b)^2=r^2
(x-(-3))^2+(y-1)^2=6^2
(x+3)^2+(y-1)^2=36
x^2+6x*9+y^2-2y+1=36
x^2+y^2+6x-2y+9+1-36=0
x^2+y^2+6x-2y-26=0
===================
1a)
g(x)=y
y=x+6
x=y-6
g^- f(x-6)
=4-5(x-6)/2=4-5x+30/2
=34-5x/2
1b)
coodinate=(x1+x2/2 ,y1+y2/2)
=(7-2/2,7-5/2)=(5/2,2/2)
=(5/2,1)
If you need us to help you with updated questions and answers at the right time about WAEC Further Mathematics Examination 2018, kindly provide us your phone number and email address in the comment box below. Also feel free to ask any question pertaining to this guide. 
What’s your take on this? I urge you to use this same opportunity to share this information across to others using our Facebook, twitter or Google+share button below.

Tags: 2018/2019 WAEC Further Mathematics, WAEC Further Mathematics, WAEC Further Mathematics 2018

LEAVE A REPLY

Please enter your comment!
Please enter your name here